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Effects of Airborne Pollutants on
Mucociliary Clearance
by Ronald K. Wolff*

The mucociliary clearance system is a first line of defense against inhaled agents, and so its compromise
can adversely affect health. The purpose of this paper is to provide a review of data on the effect of in
vivo air pollutant exposures on the clearance of test particles from airways. Data from both animals and
humans are compared whenever possible, so that estimates of human health effects may be made. Mech-
anisms of action are also discussed, presenting the view that for low level exposures, changes in secretions
are probably responsible for most observed changes in clearance. The pollutants pertinent to this review
are those that are common in the environment and most likely to have impacts on large numbers of people:
sulfur oxides, sulfuric acid mist, 08, NO2, particulates, diesel exhaust, and cigarette smoke.

Introduction
Mucociliary clearance is a lung defense mechanism by

which inhaled and deposited particles, including toxic
and infectious agents, are removed from the conducting
airways of the lungs (1,2). Beating cilia propel the over-
lying mucus, containing deposited particles, up the air-
ways to the trachea and larynx and then the mucus is
swallowed. Impairment of this fumction could act to pro-
duce accumulations of secretions in airways or to give
toxic materials a longer residence time in the airways.
Abnormal elimination of tracheobronchial mucus is as-
sociated with, and is perhaps a factor in, the pathogen-
esis of chronic obstructive lung disease, especially
chronic bronchitis (1,3). It is important to determine
the response of the mucociliary system to challenges by
airborne pollutants, especially at concentrations that
are relevant to general community and occupational ex-
posures.
There have been recent excellent reviews ofthe over-

all aspects of mucociliary clearance (1,2,4), secretions
and their role in respiratory tract defense (5,6), and
control of secretions in the airways (7-9). The primary
intent of this review is to discuss the effect of in vivo
air pollutant exposures on the clearance of test particles
from airways as an indicator of the integrated system
response.

Studies of in vitro exposures are not dealt with in
any detail in this review. In vitro exposures of ciliated
epithelium have been useful for showing the sensitivity
ofthe mucociliary system to insult (10,11) and providing
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a means of ranking pollutants. However, in vitro tests
are not necessarily good predictors of events in the in-
tact respiratory tract. The concentration of pollutants
reaching the trachea and conducting airways is often
much lower (sometimes orders of magnitude) than the
inhaled concentration, because of absorption and dep-
osition processes. Also, many integrated processes such
as reflex effects and influences from systemic circulation
require the study of an intact animal or person.

Mucociliary clearance results from the interaction of
epithelial cilia with overlying mucus secretions. Thus,
when clearance of test particles is altered it could be as
a result of changes in one or a number of factors: the
number of morphology of cilia, ciliary activity or coor-
dination, and secretion volume, composition, or viscoe-
lasticity. It is important to determine the mechanisms
responsible for observed changes in mucous clearance
to evaluate their importance and their potential for long-
term effects. If there have been changes in the depth
or total surface area of mucus, in percentages of ciliated
cells or in ciliary morphology after inhalation exposures,
these observations can help predict the likelihood of
long-term effects resulting from continued inhalation of
irritant aerosols. Thus, in the intact animal or person
there are many possible effects on the mucociliary sys-
tem. The net effect on the clearance of test particles
from the airways is one way to test the system response.
A slowing in particle clearance would seem to be an
obvious adverse effect. However, a speeding of clear-
ance is not necessarily a beneficial effect, especially if
it is associated with an increase in secretions. Excessive
secretions produced for sustained periods following
acute inhalation exposures may increase the possibility
of airway plugging and possible initiation of lung disease.
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Mucociliary System
Rhodin (12) and, more recently, Breeze and Sheldon

(13), have described the morphology of the airways. A
ciliated pseudo-stratified respiratory tract mucosa ex-
tends from the nose down to the terminal bronchioles.
Figure 1 shows a scanning electron micrograph of a
cross section of a rat trachea showing the cilia and over-
lying mucus. The major sources ofmucous glycoproteins
are goblet cells and submucosal glands of both serous
and mucous types (7). From the comparative volume of
goblet cells and submucosal glands in nornal airways,
it has been suggested that mucosal glands contribute
40 times the volume of secretions secreted by goblet
cells (14,15). As one moves to the periphery of the lung,
the percentages of both ciliated and goblet cells de-
creases (5,16). Epithelial serous cells (7), with a distri-
bution similar to that of goblet cells, are another source
of mucus. Clara cells, found primarily in the bronchioles
(13), are also possible sources of glycoprotein or lipid
or both (7).
Submucosal glands are limited to the trachea and

bronchi. There are considerable species differences.
Submucosal glands are numerous in humans, cats, pigs,
and ferrets, infrequent in rodents, and nonexistent in
geese and chickens (7,16,17). Goblet cells are numerous
in humans, cats, pigs, and geese and infrequent in ro-

dents (7).
Inhalation of irritant gases and aerosols can cause

hypertrophy ofmucous glands and hyperplasia of goblet
cells (5,18). It is not clear which of these responses is
of greater importance; the nature of the response pre-
sumably depends at least somewhat on the type of ir-
ritant and the species studied. Most ofthe data available
for pollutant responses are from rats that have fewer
goblet cells and mucous glands than man.

Control mechanisms ofmucus glycoprotein secretions
are not entirely clear. There is strong evidence for ef-
ferent parasympathetic innervation of the mucous
glands (7), and so they are at least partially under the
influence of the nervous system. Goblet cells and serous
cells are more likely to be influenced by local effects;
however, goblet cell numbers are increased by paren-
teral administration of the sympathomimetic agent is-
oproteronol (19). Both parasympathetic and sympa-
thetic stimulation have produced increased mucus
glycoprotein production and volume of secretions (19).
Parasympathetic agonists decreased secretions,
whereas sympathetic agonists appeared to have no ef-
fect (19).
There is general agreement that the mucous blanket

consists of two phases. An approximately 5,m thick
layer of low viscosity periciliary fluid bathes the cilia in
the trachea. Above this is a gel phase of higher viscosity
material about 5 ,um thick (20). Recent observations in
our laboratory indicate that the mucus glycoprotein
blanket preserved after fixation and drying is ca. 1 to
2 ,m thick in normal rats (Fig. 1). The clawed tips of
the cilia touch the upper layer at the top of their stroke

(5). The existence of these two layers is supported by
the work of Lucas and Douglas (21) and Bang and Bang
(22) and Morgan et al. (23). The primary source of the
upper layer is undoubtedly goblet cells and mucous
glands; however, the source and control of the perici-
liary fluid has not been clearly demonstrated, although
it appears to be related to water transport (7) across
the epithelium.
Whether the upper mucous layer is a continuous blan-

ket or consists of discrete "flakes" or "plaques" is a
controversial issue. The work of Iravani and Van As
(24), reviewed by Van As (25), supports the latter hy-
pothesis. Many other workers have presented data in-
dicating a continuous mucous blanket (20-22,26,27).
From available data it appears most likely that the gel
mucous layer is thinner and discontinuous as the air-
ways become smaller (5), where there are fewer ciliated
and mucous secreting cells, as noted earlier. Even in
the trachea we have observed areas as shown in Figure
2a where there is no overlying mucous glycoprotein and
in Figure 2b where it is relatively thin and strands of
glycoprotein can be seen. In our observations, these
regions represent 20 to 25% of the surface area of the
trachea in normal rats. Certainly mucous transport ve-
locities decrease from the trachea to peripheral airways
as shown by Iravani and van As (24), Asmundsson and
Kilburn (28), and Morrow et al. (29).
Tracheal mucous velocities have been observed to

range from 2 to 20 mm/min (1,2,5) in a variety of species
measured with a variety oftechniques. When consistent
methodology is used (30), smaller species have slower
velocities than large species. Velocities in the smaller
bronchioles have been found to be < 1 mm/min in rats
(24).

It must be recognized that description of mucociliary
clearance in terms of velocity has limitations. At best,
it represents an average which has a wide standard
deviation (31,32), and it represents the fastest move-
ment of material when a leading edge of transported
material is measured. The key point is that mucous
clearance is not necessarily as relentless and uniform
as it is sometimes portrayed. For instance, there are
preferential routes of clearance, at least in the trachea
(32), and presumably in the lower airways. Therefore,
there is the chance for particles to remain in an area of
slow clearance for some time. Clearance from the
smaller airways is also probably slower than has been
generally recognized. Lee (33) has calculated velocities
as low as - 5 j.tm/min for terminal bronchioles by fitting
a kinetic model to observed lung clearance curves.

Mucociliary Clearance
Measurements
Techniques for measuring mucociliary clearance of

animals or humans have been well reviewed (34-38) and
will not be covered in detail here. All methods involve
detection of the movement of test markers in the lung.
The techniques divide into two basic types. (1) Inha-
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FIGURE 1. Scanning electron micrograph of a cross-section of a control rat trachea produced by cryofracturing. This is the normal appearance
with the mucous glycoprotein blanket just at the tips of the cilia.

lation of radiolabeled particles of an appropriate size to
result in significant tracheobronchial deposition is fol-
lowed by external detection with NaI crystals or gamma
cameras over a period of hours (up to 1 day) after ex-
posure. Plots of retention of activity with time or lung
clearance curves can then be obtained. (2) Instillation
of either radiolabeled or radio-opaque materials into
specific airways (usually the trachea) is followed by ex-
ternal detection of movement using NaI detectors or
gamma cameras for radiolabeled materials and radiog-
raphy or occasionally photography through a fiberoptic
bronchoscope for nonradiolabeled materials. Photog-

raphy of cell debris moving on mucus surfaces has also
been used. Velocities of test markers are calculated and
assumed to represent that of the mucus which is car-
rying them up the airways. The latter assumption ap-
pears valid, since the effects of particle size and type
on observed velocities appear to be minimal except in
extreme cases (39-41).
Both of these methods work well in practice. The

inhalation method has some advantages in that it is a
noninvasive procedure and clearance from the entire
lung is measured. However, the instillation procedure
has the advantage that a specific airway is studied.
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a

b
FIGURE 2. Scanning electron micrographs of areas of rat trachea (a) with no mucous blanket and (b) with a thin filamentous covering.

Yeates et al. (42) have shown that tracheal clearance
rates are closely correlated with bronchial clearance
rates. Also, the instillation technique allows determi-
nation ofmucous clearance changes even in the presence
of respiratory disease that might change the deposition
pattern of inhaled particles and complicate the inter-
pretation of results. If deposition patterns change, the
observed clearance of inhaled markers will change as
well even if there are no changes in mucous clearance,
since larger airways clear faster than smaller airways.

Pollutant Effects
The main focus of this review is on pollutants com-

monly encountered in the environment and work place.
Table 1 shows the exposure limits for some of the major
regulated pollutants. These values will help put into
perspective the various exposure concentrations used
in the studies cited. A variety of different exposure
lengths have also been used. If exposure length is not
mentioned in the text, it can be assumed that it is an
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acute exposure (defined as less than 8 hr, for the pur-
poses of this review). When longer exposures have been
used they have been noted.

Sulfur Dioxide (SO2)
A number of studies have indicated alterations in mu-

cociliary clearance with SO2 exposure. Since SO2 is
highly water soluble, it is absorbed primarily in the nose
and upper airways and concentrations drop off rapidly
down the airways (43,44). Therefore, observed effects
are related to the area of the respiratory tract being
examined. Andersen et al. (45) showed significantly
slower nasal mucous clearance with exposures of hu-
mans to 1 to 5 ppm SO2. Wolff et al. (46,47) have shown
alterations of bronchial clearance in both exercising (47)
and sedentary humans (46) with exposures to 5 ppm
SO2. Speeding of clearance was observed in both cases
with greater effects for the exercising subjects than
sedentary. Mannix et al. (48) observed slower upper
airway clearance following exposure to 20 ppm SO2 but
no changes in longer term clearance. Other studies have
shown very little effects ofSO2 (49,50). On an equivalent
sulfur concentration basis, the effects of SO2 have been
shown to be approximately 1/10 those of sulfuric acid
mist with respect to altering mucociliary clearance (47)
in healthy subjects. Hirsch et al. (51) have shown slight
alterations in mucociliary clearance'following 1 ppm SO2
exposures of beagle dogs for 1 year. However, it takes
prolonged exposure to SO2 at very high levels (- 500
ppm) to produce pronounced changes characteristic of
chronic bronchitis (52,53). The predominant mechanism
appears to be an increase of secretions as shown by
Lamb and Reid (54) and Schultz et al. (55), since ciliary
beat frequency has been shown not to be altered (49).
Stimulation of secretions from the cholinergic inner-
vated mucous glands is produced primarily through re-
flex effects originating from stimulation of irritant re-
ceptors (7,55).

Recently, concern for health effects from environ-
mental exposures to SO2 has centered on the heightened
response of asthmatics. Increases of airway resistance
in asthmatics have been demonstrated at concentrations
down to 0.25 ppm (56-58). Limited data also indicate
that mucociliary clearance may also be altered; one asth-

matic showed cessation of bronchial clearance foliowing
exposure to 1 ppm SO2 + 1 mg/in3 carbon dust (59).

Sulfuric Acid Mist (H2SO4)
There is a more complete and comprehensive set of

data for mucociliary clearance effects related to sulfuric
acid mist exposures than for any other pollutant. The
effects of sulfuric acid mist on mucociliary clearance
have been studied in a variety of species. As shown in
Figure 3, rats have a different pattern of response than
man and larger animals. Rats had faster clearance at
all exposure concentrations along with evidence of in-
creased secretions on scanning electron micrographs
(60). Studies by Phalen et al. (61) and Kenoyer et al.
(62) showed very minor effects of sulfuric acid on mu-
cociliary clearance in rats. Very few studies of H2SO4
have been carried out in other small rodents but the
fact that very high concentrations (700-800 mg/m3) are
required to produce significant mortality in both mice
and rats for H2SO4 exposure (63), suggests that mice
are also not very sensitive to insult from H2SO4.
Other studies in rats and hamsters have also shown

evidence of increased tracheal secretions (64,65) follow-
inf exposures to sulfuric acid at levels down to 1 mg/
m . There were also some indications of slight epithelial
damage (65). Depressions of ciliary beat frequency at
levels of 0.9 to 1.1 mg/m3 (66) have also been observed
in rats but not at levels of - 0.5 mg/m3 (67). Although
slower mucociliary clearance has not been observed di-
rectly in rats, the other changes outlined above indicate
significant physiological responses.

Studies have shown that guinea pigs exhibit slowed
mucous clearance at - 1 mg/m3 H2SO4 levels (68,69).
This fact indicates that guinea pigs can serve as useful
small laboratory animals to study inhaled sulfate effects
relevant to humans. It was interesting that, at very
high concentrations (10 and 27 mg/m3), clearance tended
to be faster rather than slower. It appears quite likely
that these effects are related to excessive production of
secretions under highly irritant conditions (the "runny
nose"Y and "tearing eyes" phenomena). Figure 4 shows
an example of tracheal mucus increasing to a depth of
over 20 ,um in a guinea pig exposed to 27 mg/m3 H2SO4.
In these cases, overall clearance is probably increased
to prevent "flooding" of the airways. Therefore, a faster

Table 1. Regulated air pollutants

National ambient air quality primary standards
Concentration not to be exceeded Industrial threshold limit value

for averaging (time) (concentration allowable for 8 hr. exposure)
S02 0. 14 ppm (24 hr) 2 ppm
H2S04 1 mg/m3
Particulates 260 ,ug/m3 (24 hr) 10 mg/mb
03 0.12 ppm (1 hr) 0.1
Nitrogen oxides 0.05 ppm (1 year) 3
Co 35 ppm (1 hr) 50
Hydrocarbons 0.24 ppm (3 hr) a
aNot regulated.
b Nuisance dust, 5mg/m3 respirable.
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FIGURE 3. Conceptualization of the differences observed in mucous
velocities in various species after acute exposures to sulfuric acid
mist aerosols in the 0.5 to 0.9 ,m size range.

clearance rate cannot necessarily be interpreted as re-
flecting a beneficial condition.
Data obtained by various investigators from large

animals and humans agree relatively well and share the
following common features. They indicate that exposure
to low levels (0.1-0.5 mg/m3) of sulfuric acid mist in the
0.6 to 0.9 ,m mass median aerodynamic diameter
(MMAD) size range can have an irritating effect that
produces a speeding of tracheal clearance (Fig. 3). At
the 1.0 mg/i3 level, clearance is depressed after ex-

posure of dogs (70), donkeys (71), humans (72), guinea
pigs (68), and rabbits (73) (Fig. 3). A high degree of
interindividual variability in response has been shown,
particularly at levels below 1 mg/m3. This was observed
in studies of dogs at 0.5 mg/mi (70) and also in studies
of humans at 0.11 and 0.33 mg/m3 (72).

It seems most likely that the observed changes in
mucous clearance following exposure to sulfuric acid
mist were predominantly related to reflex-mediated
changes in mucous properties similar to those described
for SO2 exposures. The depth, viscosity, and elasticity
of mucus may be altered; this, in turn, alters mucous
velocities (5). Changes in ciliary beat frequency are also
possible. It appears that mild irritation produces an
increase in mucus production which the clearance sys-
tem can deal with by speeding mucociliary clearance.
King's data (74) on the effect of cholinergic stimulation
by methacholine showed a speeding of clearance at low
concentrations correlated with an increase in mucous
production and there was relatively little change in elas-
ticity. These results suggest that the mucous clearance
system can respond to changing "load" or volume of
secretion, within limits. However, with higher concen-
trations of methacholine, mucous velocities fell dra-
matically. The irritant response to H2SO4 may be sim-
ilar. Acute exposures to relatively low concentrations
can produce some irritation and faster mucociliary clear-
ance. At higher concentrations of H2SO4 or possibly
with longer exposures, further changes in mucous prop-
erties may result in viscoelastic changes which impair
clearance. Acute exposures to very high concentrations
may produce airway "flooding" and faster clearance. It
will be very important to determine if chronic exposures
result in impaired clearance and eventual alteration in
lung structure and deterioration of pulmonary function.

Sulfuric acid effects seem to be strongly particle size
dependent. Exposures to 0.8 to 0.9 ,um MMAD aerosols
caused approximately five times more mortality in
guinea pigs than exposures to 0.3 to 0.4 ,um aerosols
(75). No effect was observed on tracheal mucociliary
clearance in dogs exposed to 5 mg/m3 concentrations of
0.3 ,um aerosols while decided effects were observed at
1.0 mg/m3 concentrations of 0.9 ,um aerosols (70). These
results are consistent with those ofSackner et al. (76,77)
who showed a lack of effect of 0.1 to 0.2 ,um H2SO4
aerosols on mucociliary clearance in sheep at concen-
trations up to 14 mg/m3. Mucociliary clearance effects
have been noted in studies by others using H2SO4 par-
ticles greater than 0.5 ,um MMAD in size (70-72). Thus,
it appears that particles must be greater than 0.5 ,m
and perhaps larger to elicit significant physiological re-
sponses. The fact that the studies in beagle dogs (70)
and guinea pigs (75)-showed such dramatic differences
with particle size is probably because much narrower
size distributions were used than in other studies; geo-
metric standard deviations (ag) of 1.2 to 1.3 were
achieved as compared to the org of 1.7 to 2.6 in other
studies. For example, a considerable portion ofthe mass
of 0.6 pum MMAD polydisperse aerosols is above 0.8
,um. In contrast, the mass of 0.4 ,m MMAD aerosols
((Jg = 1.2) greater than 0.8 ,m is negligible.
One explanation for the relationship of response to

particle size may be regional differences in deposition.
Data are accumulating which indicate that the major
mechanism responsible for adverse effects of inhaled
sulfuric acid mist is the stimulation of upper airway
receptors. This can result in reflex-mediated broncho-
constriction (78) and also increases in secretions from
the mucous glands (5). Therefore, if more material is
deposited in upper airways, a greater effect may be
elicited. Deposition studies have confirmed that there
is greater upper airway deposition of 0.8 to 0.9 ,m
MMAD sulfuric acid aerosols than of 0.3 to 0.4 ,um
MMAD aerosols (79).
Another factor which may be important is the degree

of neutralization of the acid droplets by endogenously
produced ammonia in the upper airways (80). Experi-
mental observations have shown a greater degree of
neutralization of 0.5 ,m MMAD aerosols than of 1.0 ,m
aerosols (81). This means that more of the smaller aer-
osols will be converted to the less reactive (NH4)2SO4
and NH4HSO4 than the larger aerosols, probably caus-
ing a lesser physiological effect of smaller particles than
larger particles.
The above results show impairment of an important

lung defense mechanism following acute exposures to
relatively low levels of sulfuric acid mist. Such an im-
pairment might lead to greater toxicity of inhaled ma-
terials because of longer residence time in the lung and
also increased susceptibility to infectious agents. These
facts must be considered when setting industrial thresh-
old limit values. These results are also important in
determining mechanisms that might lead to chronic res-
piratory disease in people chronically exposed to urban
atmospheres containing sulfate aerosols.
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FIGURE 4. Scanning electron micrographs of a cryofractured cross section and overlying mucus from the trachea of a guinea pig exposed to
27 mg/mr H2S04. Mucus depth is greater than 20 urm; this is many times thicker than observed in the nornal state. (See Fig. 1 for an
example in a rat.)
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FIGURE 5. Aerosol mass distributions showing the distribution for
0.3 ,um mass median aerodynamic diameter (MMAD) particles
which did not show health effects compared to the 0.9 ,um MMAD
particles which did show effects (58). Also shown is the typical
atmospheric distribution of sulfates for relatively polluted condi-
tions (30 p.g/m3 sulfate).

These effects have particular significance in the light
of atmospheric conditions during high pollution episodes
and their relation to particle size. High humidity and
high particle number concentration will tend to promote
growth of aerosols, particularly hygroscopic materials
like sulfuric acid mist. Data summarized by Whitby (82)
showed that the mass median diameter of sulfate aer-
osols ranged from approximately 0.3 jim under lightly
polluted conditions (- 10 jig/i3 sulfate) to approxi-
mately 0.7 jim under relatively heavily polluted con-
ditions (- 30 jig/m3 sulfate). Again, the crg was rela-
tively large (- 2.0), so there would be considerable mass
greater than 0.8 jim for 0.7 jimMMAD particles. Figure
5 compares ambient sulfate particle size with those used
in the dog studies (70). The results suggest that larger
particles, associated with more heavily polluted condi-
tions, may be more harmful than smaller particles.
Therefore, adverse health effects would be accentuated
at these times. The data of Whitby (82) also show that
even under heavily polluted environmental conditions
total sulfate levels are a factor of approximately three
times lower than those at which effects of sulfuric acid
mist have been noted experimentally.

It is very important to relate changes in lung clear-
ance to pulmonary function and structure. Studies with
low concentrations of sulfuric acid mist have shown an
effect on mucociliary clearance but no effect on pul-
monary function in donkeys (71). Acute exposures of
"normal" humans to H2SO4 have not shown changes in
pulmonary function, or airway reactivity at levels of 1
mg/m3 (83,84) and exposures of asthmatics have shown
changes in airway reactivity only at 450 jig/i3 (84).
However, one of the major questions that remains un-
resolved is whether these changes contribute to the
development of lung disease. It is crucial to determine
if permanent structural damage occurs, eventually re-

sulting in decrements in pulmonary function or if sul-
fates trigger only acute effects which are transitory.
The most persuasive sets of data are the studies of
chronic exposures of donkeys to 100 jig/i3 sulfuric acid
reported by Schlesinger et al. (85) and Lippmann (86).
Decreases in mucociliary clearance were found in two
of the four donkeys, and the other two showed variable
responses. Acute exposures at the 100 ig/im3 level had
caused either no changes or speeding in clearance.
Schlesinger et al. (87) have reported faster mucociliary
clearance during and up to 2 weeks after 4 week ex-
posures to 250 and 500 jig/m3 sulfuric acid. These func-
tional changes were also accompanied by observations
of statistically significant increases in epithelial thick-
ness and numbers of epithelial secretary cells in small
airways. These results, coupled with the similarities of
the human and large animal responses, suggest that
high levels of sulfate sometimes found in urban envi-
ronments may be a contributor to the development of
lung disease. However, additional studies are needed
to improve the certainty ofthis supposition. Mucociliary
clearance effects appear to be one of the most sensitive
indicators of potentially harmful health effects from in-
haled sulfuric acid.

Other Sulfur Oxides
Sulfuric acid mist appears to be the most potent of

the sulfur oxides in producing impairments in mucocil-
iary clearance although there are limited data. Am-
monium sulfate appears to produce minimal effects (71).
Sulfur dioxide produces less effect (46), as does a ferric
sulfite complex (73), sodium sulfite (73), or ammonium
sulfite (88). Last (89) has shown ammonium persulfate
to produce results similar to those of sulfuric acid mist.
Studies by Sackner (76,77) have shown no effects on
pulmonary function in dogs or tracheal mucociliary
clearance in sheep exposed to submicron aerosols (0.05-
0.2 jim) at concentrations ranging from 4 to 9 mg/m3 of
sodium sulfate, ammonium sulfate, zinc sulfate, zinc am-
monium sulfate, ammonium bisulfate, aluminum sulfate,
manganese sulfate, nickel sulfate, copper sulfate, fer-
rous sulfate, and ferric sulfate. The lack of response
may be related to the small size of aerosols used. More
recent studies in sheep with larger particles (0.5-1.5
,um) of aluminum sulfate, ammonium sulfate, zinc am-
monium sulfate, zinc sulfate, and sulfuric acid have
shown significant slowing of clearance (90).
From studies in which effects have been observed, it

appears quite likely that the potency order ofparticulate
sulfates for mucociliary clearance effects is similar to
that developed by Amdur (91) using airway resistance
effects in guinea pigs. She found that the irritant effect
was generally related to the acidity in solution; sulfuric
acid was the most potent and ammonium sulfate one of
the least (91). Schlesinger (92) demonstrated that this
appears to be true from the more limited number of
compounds that have been studied. The potency order
for the mucociliary clearance studies was H2SO4 >
NH4HSO4 > (NH4)2SO4, Na2SO4. The acidity of the
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aerosols seems to be the predominant factor in influ-
encing effects; however, chemical reactivity may play
a modulating role given the fact that observable effects
are found for some metal sulfates, sulfite, and SO2 while
they have near neutral pH values in aqueous solution.
Reflex-mediated responses are probably primarily re-
sponsible for the observed effects in both cases; bron-
choconstriction leading to airway resistance changes for
Amdur's measurements and increases in secretions pro-
ducing mucociliary clearance changes in other studies.

Ozone (03)
Only a few studies of 03 effects on mucociliary clear-

ance have been carried out, often in conjunction with
sulfuric acid mist. Phalen et al. (61) showed impairment
of early clearance in rats following 4-hr exposure to 0.8
ppm 03. Co-exposure with 3.5 mg/m3 H2SO4 did not
appreciably alter the results; the depression in clearance
persisted but was not augmented. Last et al. (64,93)
have shown increases in secretions following 3 to 14 day
exposures of rats to 0.4 to 0.5 ppm 03. In this latter
case, there were additive and even synergistic increases
with co-exposures to H2SO4, with demonstrated effects
down to 11 ,ug/m3 (64). Grose et al. (66) have shown no
changes in ciliary beat frequency following 2-hr expo-
sures to 0.4 ppm Oa and also no changes with co-ex-
posures to 0.5 mg/mi H2SO4. Morphological studies in-
dicate ciliary damage in the airways following 03
exposure (94). However, studies by Abraham et al. (95)
showed no changes in tracheal mucous velocities in
sheep following exposures to 0.5 ppm 03 while changes
in bronchial reactivity were noted.

Nitrogen Dioxide (NO2)
Studies ofNO2 effects are also very limited. Giordano

and Morrow (96) demonstrated impairments of tracheal
clearance of rats following a 6-week exposure to 6 ppm
NO2. Higher level exposures have been shown to inhibit
clearance (97,98), but there are no reports of studies at
lower levels. Two-hour exposures to 7.5 ppm NO2 pro-
duced no changes in tracheal mucous velocity in sheep,
while exposures to 15 ppm NO2 produced slowing (99).
Since both NO2 and 03 tend to produce effects predom-
inantly in the region of the terminal bronchioles
(94,100), it might be expected that effects on mucociliary
clearance would not be as pronounced as for sulfuric
acid mist. Other evidence for predominantly lower air-
way effects are the observations that acute and sub-
chronic exposures to NO2 (101), 03, 03 + sulfiric acid
mist (66,102,103), and sulfuric acid + carbon dust (104),
reduce resistance to respiratory bacterial infections.
Such results have been ascribed primarily to effects on
macrophages (66,101).

Other Irritant Gases
A variety of irritant gases have been shown to inhibit

ciliary activity, particularly in in vitro studies (10,11).

In addition to the effects of SO2, NO2, and 03 mentioned
above, Dalhamm (105) has shown that high concentra-
tions of ammonia and formaldehyde depress mucus flow
and ciliary activity following in vivo exposures. More
recently, Mannix et al. (48) have reported slower upper
airway clearance in rats following exposure to 20 ppm
formaldehyde, and Morgan et al. (106) have reported
ciliastasis in frog palates exposed to 4.4 ppm or more
formaldehyde.

Particulates
Few studies of particulate effects have been con-

ducted. Camner et al. (107) showed a speeding in bron-
chial clearance following brief exposure of human sub-
jects to 50 mg/m3 carbon dust. Schiff et al. (65) showed
tracheal epithelial damage following combined expo-
sures of hamsters to sulfuric acid and carbon dust. In-
halation of 37 mg/m3 pulverized coal combustion fly ash
and 36 mg/m3 fluidized bed coal combustion fly ash for
4 weeks both produced no changes in early clearance of
rats, but there were impairments of deep lung clearance
(108). Similar results have also been obtained in rats at
another laboratory (H. Muhle, personal communica-
tion). Accumulations of particles in the alveolar regions
of the lung, characteristic of deep lung clearance im-
pairments, have also been observed after exposures to
high concentrations of coal dust (109), carbon black
(110), diesel exhaust particles (109,111-114), and coal
combustion fly ash (108). Abraham et al. (115) have
shown that exposures of sheep to resuspended diesel
exhaust particulate for 30 min at 0.4 to 0.5 mg/m3 pro-
duced no changes in tracheal mucous clearance. There
are no studies that show impairments of upper airway
mucociliary clearance following particulate exposures to
relative inert materials.
There have been some studies with trace metal aer-

osols which could indicate possible deleterious effects.
Depressions in ciliary beat frequency have been seen
after exposures to cadmium chloride (1.3 mg/m3 for 2
days) (116) and nickel chloride (0.1 mg/m3 for 2 hr) (117).
These results suggest possible harmful effects if such
high concentrations of soluble aerosols were encoun-
tered in an occupational situation.

Effects of particulate exposures appear to be rela-
tively minor for mucociliary clearance but more pro-
nounced for deep lung clearance when high lung burdens
in the alveolar region are achieved. These results are
not surprising since most of the materials studied are
relatively innocuous and nonirritant.

Complex Mixtures
Diesel Exhaust. Diesel exhaust consists of a mix-

ture of gases, vapors, and particles. The particles are
composed of a carbonaceous core with adsorbed organ-
ics. Early studies (118) indicated impairments in mu-
cociliary clearance following acute exposures of rats.
More recent subchronic studies in rats indicated some
transient changes over the first few weeks (119), which
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subsequently resolved after 18 weeks of exposure (120).
As noted in the previous section, acute exposures to
resuspended diesel particles alone (115) also produced
no changes. Despite the presence of irritant gases, die-
sel exhaust emissions appear to produce little change
in mucociliary clearance. However, there are a number
of studies which either show directly that deep lung
clearance is impaired in rats following chronic diesel
exhaust exposure (120-125) or strongly indicate such
an effect because of increased lung burdens (111-113).

Cigarette Smoke. Like much of the scientific lit-
erature related to cigarette smoking, there have been
some confficting results. In general, most acute expo-
sures using in vitro preparations have shown a depres-
sion of ciliary activity and mucus transport (126-128).
Acute exposures of animals and humans to cigarette
smoke have produced either a speeding, no change, or
a slowing in mucociliary clearance. Some of these dis-
crepancies may be methodological, but the studies of
Yergin et al. (129), Isawa et al. (130), and Yeates et al.
(131) support the view that acute smoking can have a
variable effect on clearance.
Long-term smoking appears to depress mucociliary

clearance. Again, methodological differences and inter-
individual variability have produced some conflicting
data and so only the more definitive studies will be
mentioned. By using radioaerosol inhalations and se-
lecting healthy smokers and nonsmokers, Lourenco et
al. (132) were able to show delayed overall clearance
and an accumulation of material in central airways. San-
chis et al. (133) obtained similar results. Both Bohning
et al. (134) and Camner and Philipson (135) were able
to study smoking-discordant twins and showed depres-
sion of clearance in about half of the cases and no dif-
ferences in others. Camner et al. (136) have seen that,
in the absence of smoking, clearance in twins is strik-
ingly similar. Goodman et al. (137) found dramatic re-
ductions in tracheal mucus velocities in young healthy
smokers. Some ofthe most informative studies are those
in which a subject can be used as his own control. Cam-
ner et al. (138) found that cessation of smoking resulted
in an improvement of mucociliary clearance after three
months. Wanner et al. (139) found that chronic expo-
sures of beagle dogs to cigarette smoke for 13.5 months
depressed tracheal mucous velocities while lung me-
chanics did not change. These findings suggest that
either mucociliary clearance defects may contribute to
a chronic bronchitic state and/or they may provide an
early warning of the possibility of development of the
disease.

Mechanisms of Altered Clearance
As mentioned earlier, a number of factors may pro-

duce changes in mucociliary clearance. At threshold
limit values and above, there is evidence for direct ef-
fects of pollutants on epithelium including such events
as ciliary damage, cell sloughing, goblet cell discharge
of secretions and probably serous cell discharge of se-
cretions (5). In vitro studies have shown effects on me-

diators such as histamine (140) and prostaglandins (141)
which might elicit local cellular responses including in-
creased secretions. Lippmann et al. (86,142) have sug-
gested that clearance is influenced primarily in the air-
ways where H2SO4 is deposited. There is also evidence
for adverse pH effects on the mucosa and ciliary activity
(143).
There is considerable evidence for the alteration of

the nature and volume of secretions by reflex events
originating from stimulation of irritant receptors. The
studies by Schultz et al. (55) clearly show that increases
of tracheal mucous secretions can be observed in dogs
even when SO2 exposure is isolated to the larynx and
no gas reaches the trachea. Keal (18) has stated that
mucus secretory changes appear to precede effects on
ciliary activity in rats, and Phipps (19) has shown that
in the cat reflex secretory effects can be independent
of bronchomotor effects, because increased secretions
were produced from ammonia vapor inhalation when no
bronchoconstriction was evident. Last et al. (64) has
shown significant increases in secretion beyond those
produced by 03 exposure with the addition of only 14
,ug/m3 sulfuric acid to the atmosphere. All of these re-
sults indicate the degree of sensitivity of secretion re-
sponse.

Effects on hydration of mucus, as evidenced by
changes in ion transport (7), have not been clearly dem-
onstrated as being produced by pollutants. However,
drugs that show effects on ion transport indicating in-
creases in watery secretion have also been shown to
produce increases in mucus glycoproteins. It would not
be too surprising if there were parallel effects on ion
transport caused by pollutants, mediated by reflex path-
ways, since various pollutants have been shown to in-
crease mucus glycoprotein production. Studies of air-
way permeability (144), which may be related to ion
transport, have shown increases with exposures to cig-
arette smoke (145).
Evidence has been provided suggesting that the per-

iciliary fluid level may be a very important determinant
of particle and secretion movement. Stutts et al. (147)
have suggested that increased periciliary fluid may un-
couple the cilia from the overlying mucus. Proctor et
al. (148) have observed cases where there was no move-
ment of particles on the mucus layer while movement
of the underlying periciliary fluid could be seen with
dyes.
Most studies have shown relatively few effects of pol-

lutants on ciliary activity at concentrations not causing
a loss of ciliated cells. Cilia appear to be quite hardy
and affected only when exposures are at or above
threshold limit values.
The observed effects on mucociliary clearance are

probably the result of some combination of all these
factors. It is for this reason that mucociliary clearance
studies may provide sensitive indicators of responses to
irritant gases and aerosols since responses relate to a
summation of effects.
The available evidence suggests that, for exposures

near the current air quality limits, reflex mediated ef-
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fects are most likely those that will predominate and be
responsible for observed changes. Therefore, suscep-
tible individuals would be those with the most pro-
nounced reflex responses. Individuals such as asthmat-
ics, with heightened bronchial reactivity, could be at
greater risk to inhaled pollutants than the general pop-
ulation. However, clearance abnormalities may not be
heightened in asthmatics because the secretary re-
sponse is not directly tied to the bronchoconstrictive
response (19). More studies on effects of pollutants on
mucociliary clearance of asthmatics would be useful to
clarify this issue.

It must be recognized that increases in secretions are
probably a protective response. Nadel (7) and Phipps
(19) have suggested that they could act to increase the
barrier between the pollutant and the sensitive epithe-
lium. However, it would appear that the key concern
is whether a "biological backfire" phenomenon might be
initiated. If there is continued stimulus, then increased
secretions might well persist and eventually result in
impaired clearance. Or, there may be interactions pro-
duced with other pollutants or respiratory infections
which will tend to perpetuate an ongoing response and
eventually lead to even greater problems. Lippmann
(142) has suggested that pollutant exposures may affect
clearance regulation resulting in erratic clearance be-
havior which is more characteristic of a bronchiticlike
condition. It has to be recognized that ultimate adverse
effects such as chronic bronchitis will probably occur
only in a small fraction of people.

Summary
A variety of pollutants have been shown to impair

mucociliary clearance following acute or subehronic ex-
posures. The most convincing evidence for significant
effects has been presented for sulfuric acid mist and
sulfur dioxide and to a lesser extent for 03 and NO2
exposures. It appears that the more irritant the aerosol,
the more pronounced the effects on mucociliary clear-
ance.
The prime mechanism for observed alterations seems

to be an increase in secretion produced predominantly
by reflex effects following stimulation of upper airway
receptors (7), although direct effects may also play a
role (7). As such, mucociliary clearance studies provide
a sensitive indication of response to irritant pollutants;
they showed observable health effects at the lowest
levels tested in the case ofH2SO4 mist. Slowed clearance
is a clear indication of adverse health effects but faster
clearance, coupled with increases in secretion, must also
be viewed with caution, since it probably indicates com-
pensation in an adverse situation.
Whether mucociliary clearance data from acute or

subehronic exposures can provide predictions of long-
term lung damage which might result from chronic ex-
posures is not clear. The main hypothesis has been that
slowing in clearance and increases in secretion might
be initiating factors in chronic obstructive respiratory
disease (1,3). The observations to date indicate that

mucociliary impairments found in acute exposures are
good predictors of the development of lung disease fol-
lowing chronic exposure to H2SO4 mist. Most other pol-
lutants have not been studied as extensively as sulfuric
acid mist and so it is not clear if similar relationships
will hold. It is also interesting that larger species show
greater effects than rodents, in general, for both acute
and chronic exposures. It should also be noted that the
anatomic lesions observed for the chronic H2SO4 mist
exposures were relatively subtle (87,149). Therefore,
one would suspect that for chronic exposures of humans
at high ambient levels of sulfate, lung disease would
probably be initiated only in a small percentage of peo-
ple and then probably only in concert with other factors
such as respiratory infections and exposure to other
agents. Challenges for future research are to further
examine relationships between acute and chronic clear-
ance effects, to determine sensitive populations at risk,
and to investigate interactions of various environmental
factors.
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